OpenCRVS
v1.4
v1.4
  • 👋Welcome!
  • CRVS Systems
    • Understanding CRVS
    • Effective digital CRVS systems
    • OpenCRVS within a government systems architecture
    • OpenCRVS Value Proposition
  • Product Specifications
    • Functional Architecture
    • Workflow management
    • Status Flow Diagram
    • Users
      • Examples
    • Core functions
      • 1. Notify event
      • 2. Declare event
      • 3. Validate event
      • 4. Register event
      • 5. Print certificate
      • 6. Issue certificate
      • 7. Search for a record
      • 8. View record
      • 9. Correct record
      • 10. Verify record
      • 11. Archive record
      • 12. Vital statistics export
    • Support functions
      • 13. Login
      • 14. Audit
      • 15. Deduplication
      • 16. Performance management
      • 17. Payment
      • 18. Learning
      • 19. User support
      • 20. User onboarding
    • Admin functions
      • 21. User management
      • 22. Comms management
      • 23. Content management
      • 24. Config management
    • Data functions
      • 25. Legacy data import
      • 26. Legacy paper import
  • Technology
    • Architecture
      • Performance tests
    • Standards
      • FHIR Documents
        • Event Composition
        • Person
        • Registration Task
        • Event Observations
        • Locations
    • Security
    • Interoperability
      • Create a client
      • Authenticate a client
      • Event Notification clients
      • Record Search clients
      • Webhook clients
      • National ID client
      • FHIR Location REST API
      • Other ways to interoperate
  • Default configuration
    • Intro to Farajaland
    • Civil registration in Farajaland
    • OpenCRVS configuration in Farajaland
      • Application settings
      • User / role mapping
      • Declaration forms
      • Certificate templates
    • Business process flows in Farajaland
  • Setup
    • 1. Planning an OpenCRVS Implementation
    • 2. Establish project and team
    • 3. Gather requirements
      • 3.1 Mapping business processes
      • 3.2 Mapping offices and user types
      • 3.3 Define your application settings
      • 3.4 Designing event declaration forms
      • 3.5 Designing a certificate template
    • 4. Installation
      • 4.1 Set-up a local development environment
        • 4.1.1 Install the required dependencies
        • 4.1.2 Install OpenCRVS locally
        • 4.1.3 Starting and stopping OpenCRVS
        • 4.1.4 Log in to OpenCRVS locally
        • 4.1.5 Tooling
          • 4.1.5.1 WSL support
      • 4.2 Set-up your own, local, country configuration
        • 4.2.1 Fork your own country configuration repository
        • 4.2.2 Set up administrative address divisions
          • 4.2.2.1 Prepare source file for administrative structure
          • 4.2.2.2 Prepare source file for statistics
        • 4.2.3 Set up CR offices and Health facilities
          • 4.2.3.1 Prepare source file for CRVS Office facilities
          • 4.2.3.2 Prepare source file for health facilities
        • 4.2.4 Set up employees & roles for testing or production
          • 4.2.3.1 Prepare source file for employees
          • 4.2.3.2 Configure role titles
        • 4.2.5 Set up application settings
          • 4.2.5.1 Managing language content
            • 4.2.5.1.1 Informant and staff notifications
          • 4.2.5.2 Configuring Metabase Dashboards
        • 4.2.6 Configure certificate templates
        • 4.2.7 Configure declaration forms
          • 4.2.7.1 Configuring an event form
        • 4.2.8 Seeding & clearing your local databases
        • 4.2.9 Countryconfig API endpoints explained
      • 4.3 Set-up a server-hosted environment
        • 4.3.1 Verify servers & create a "provision" user
        • 4.3.2 HTTPS & Networking
        • 4.3.3 Create a Github environment
          • 4.3.3.1 Environment secrets and variables explained
        • 4.3.4 Provision environments
          • 4.3.4.1 Building, pushing & releasing your countryconfig code
        • 4.3.5 Deploy
    • 5. Functional configuration
      • 5.1 Configure application settings
      • 5.2 Configure registration periods and fees
      • 5.3 Managing system users
    • 6. Quality assurance testing
    • 7. Go-live
      • 7.1 Pre-Deployment Checklist
    • 8. Operational Support
    • 9. Monitoring
      • 9.1 Application logs
      • 9.2 Infrastructure health
      • 9.3 Routine monitoring checklist
      • 9.4 Setting up alerts
      • 9.5 Managing a Docker Swarm
  • General
    • Community
    • Contributing
    • Releases
      • v1.4.1: Release notes
      • v1.4.0 to v1.4.1 Migration notes
      • v1.4.0 Release notes
      • v1.3.* to v1.4.* Migration notes
      • v1.3.5: Release notes
      • v1.3.4: Release notes
      • v1.3.3: Release notes
      • v1.3.1: Release notes
      • v1.3.* to v1.3.* Migration notes
      • v1.3.0: Release notes
      • v1.2.* to v1.3.* Migration notes
        • v1.2 to v1.3: Form migration
      • v1.2.1: Release notes
      • Patch: Elasticsearch 7.10.2
      • v1.2.0: Release notes
      • v1.1.* to v1.2.* Migration notes
      • v.1.1.2: Release notes
      • v.1.1.1: Release notes
      • v1.1.0: Release notes
    • Interoperability roadmap
    • Product roadmap
Powered by GitBook
On this page
  1. Technology
  2. Standards

FHIR Documents

PreviousStandardsNextEvent Composition

When we were looking for a Civil Registration data standard to use for OpenCRVS, we were inspired by FHIR, specifically:

  • The model contains a structure that supports basic requirements with flexibility. e.g. : a property that can support any combination of given and family names, titles, prefixes and suffixes.

  • can cover administrative divisions as well as specific buildings where births and deaths occur, with an structure that can cater for structured and un-structured addresses.

  • The marks an event interaction between a Patient and a where are made.

  • can be used for required supporting document attachments

  • can be created to audit interactions.

  • The allows a system to request all / or just a few of these connected resources into a single, customisable, person centric longitudinal record.

It seemed to us to be a small conceptual leap to equate these healthcare intended use-cases of FHIR to the civil registration context.

Essentially we could equate Patient to Person, Healthcare Practitioner to a Civil Registration staff member, use Encounter to mark the event when the person interacts with a Registrar when making a declaration, and use Observation to mark the essential data points such as educational level, occupation whose codes are already provided by FHIR and extend upon them for our Civil Registration needs.

OpenCRVS' data model is therefore an extension to FHIR and we have yet to find any Civil Registration process that cannot be interpreted using FHIR.

Rather than spend years co-creating an accepted global civil registration standard that doesn't currently exist, why not adopt an already long established and versioned standard that satisfies our requirements and make minor extensions to it? Why not choose a standard that automatically interacts with healthcare providers where a large portion of frontline birth and death data may be sourced from?

The following pages describe how FHIR documents from OpenCRVS look and the extensions we have made.

The payload of the birth registration event webhook contains the id, that can be used to retrieve all subsequent details for the registration. So, subscribing to this webhook is good place to start to begin any integration and understanding of the FHIR Documents available.

FHIR Patient
HumanName
FHIR Locations
Address
FHIR Encounter
Practitioner
Observations
FHIR Documents
Tasks
FHIR Bundle
FHIR Composition