OpenCRVS
v1.5
v1.5
  • 👋Welcome!
  • CRVS Systems
    • Understanding CRVS
    • Effective digital CRVS systems
    • OpenCRVS within a government systems architecture
    • OpenCRVS Value Proposition
  • Product Specifications
    • Functional Architecture
    • Workflow management
    • Status Flow Diagram
    • Users
      • Examples
    • Core functions
      • 1. Notify event
      • 2. Declare event
      • 3. Validate event
      • 4. Register event
      • 5. Print certificate
      • 6. Issue certificate
      • 7. Search for a record
      • 8. View record
      • 9. Correct record
      • 10. Verify record
      • 11. Archive record
      • 12. Vital statistics export
    • Support functions
      • 13. Login
      • 14. Audit
      • 15. Deduplication
      • 16. Performance management
      • 17. Payment
      • 18. Learning
      • 19. User support
      • 20. User onboarding
    • Admin functions
      • 21. User management
      • 22. Comms management
      • 23. Content management
      • 24. Config management
    • Data functions
      • 25. Legacy data import
      • 26. Legacy paper import
  • Technology
    • Architecture
      • Performance tests
    • Standards
      • FHIR Documents
        • Event Composition
        • Person
        • Registration Task
        • Event Observations
        • Locations
    • Security
    • Interoperability
      • Create a client
      • Authenticate a client
      • Event Notification clients
      • Record Search clients
      • Webhook clients
      • National ID client
      • FHIR Location REST API
      • Other ways to interoperate
  • Default configuration
    • Intro to Farajaland
    • Civil registration in Farajaland
    • OpenCRVS configuration in Farajaland
      • Application settings
      • User / role mapping
      • Declaration forms
      • Certificate templates
    • Business process flows in Farajaland
  • Setup
    • 1. Planning an OpenCRVS Implementation
    • 2. Establish project and team
    • 3. Gather requirements
      • 3.1 Mapping business processes
      • 3.2 Mapping offices and user types
      • 3.3 Define your application settings
      • 3.4 Designing event declaration forms
      • 3.5 Designing a certificate template
    • 4. Installation
      • 4.1 Set-up a local development environment
        • 4.1.1 Install the required dependencies
        • 4.1.2 Install OpenCRVS locally
        • 4.1.3 Starting and stopping OpenCRVS
        • 4.1.4 Log in to OpenCRVS locally
        • 4.1.5 Tooling
          • 4.1.5.1 WSL Support
      • 4.2 Set-up your own, local, country configuration
        • 4.2.1 Fork your own country configuration repository
        • 4.2.2 Set up administrative address divisions
          • 4.2.2.1 Prepare source file for administrative structure
          • 4.2.2.2 Prepare source file for statistics
        • 4.2.3 Set up CR offices and Health facilities
          • 4.2.3.1 Prepare source file for CRVS Office facilities
          • 4.2.3.2 Prepare source file for health facilities
        • 4.2.4 Set up employees & roles for testing or production
          • 4.2.3.1 Prepare source file for employees
          • 4.2.3.2 Configure role titles
        • 4.2.5 Set up application settings
          • 4.2.5.1 Managing language content
            • 4.2.5.1.1 Informant and staff notifications
          • 4.2.5.2 Configuring Metabase Dashboards
        • 4.2.6 Configure certificate templates
        • 4.2.7 Configure declaration forms
          • 4.2.7.1 Configuring an event form
        • 4.2.8 Seeding & clearing your local databases
        • 4.2.9 Countryconfig API endpoints explained
      • 4.3 Set-up a server-hosted environment
        • 4.3.1 Verify servers & create a "provision" user
        • 4.3.2 TLS / SSL & DNS
          • 4.3.2.1 LetsEncrypt https challenge in development environments
          • 4.3.2.2 LetsEncrypt DNS challenge in production
          • 4.3.2.3 Static TLS certificates
        • 4.3.3 Configure inventory files
        • 4.3.4 Create a Github environment
          • 4.3.4.1 Environment secrets and variables explained
          • 4.3.4.2 VPN Recipes
        • 4.3.5 Provisioning servers
          • 4.3.5.1 SSH access
          • 4.3.5.2 Building, pushing & releasing your countryconfig code
          • 4.3.5.3 Ansible tasks when provisioning
        • 4.3.6 Deploy
          • 4.3.6.1 Running a deployment
          • 4.3.6.2 Seeding a server environment
          • 4.3.6.3 Login to an OpenCRVS server
          • 4.3.6.5 Resetting a server environment
        • 4.3.7 Backup & Restore
          • 4.3.7.1 Restoring a backup
          • 4.3.7.2 Off-boarding from OpenCRVS
    • 5. Functional configuration
      • 5.1 Configure application settings
      • 5.2 Configure registration periods and fees
      • 5.3 Managing system users
    • 6. Quality assurance testing
    • 7. Go-live
      • 7.1 Pre-Deployment Checklist
    • 8. Operational Support
    • 9. Monitoring
      • 9.1 Application logs
      • 9.2 Infrastructure health
      • 9.3 Routine monitoring checklist
      • 9.4 Setting up alerts
      • 9.5 Managing a Docker Swarm
  • General
    • Community
    • Contributing
    • Releases
      • v1.5.1: Release notes
      • v1.5.0: Release notes
      • v1.4.1: Release notes
      • v1.4.0 to v1.4.1 Migration notes
      • v1.4.0 Release notes
      • v1.3.* to v1.4.* Migration notes
      • v1.3.5: Release notes
      • v1.3.4: Release notes
      • v1.3.3: Release notes
      • v1.3.1: Release notes
      • v1.3.0: Release notes
      • v1.2.1: Release notes
      • Patch: Elasticsearch 7.10.2
      • v1.2.0: Release notes
      • v.1.1.2: Release notes
      • v.1.1.1: Release notes
      • v1.1.0: Release notes
    • Roadmap
Powered by GitBook
On this page
  1. Technology
  2. Interoperability

Other ways to interoperate

Direct interoperability with OpenHIM

PreviousFHIR Location REST APINextIntro to Farajaland

It is possible to expose the interoperability layer: for direct integration with OpenCRVS' Hearth database.

Exposing OpenHIM for API access bypasses the auditing capabilities that are native to OpenCRVS. You must consider the risk and develop your own audit trail to track custom API access to citizen data should you expose OpenHIM. OpenHIM's logging history is configured to refresh after 30 days. You should fully understand before proceeding.

Before exposing OpenHIM, consider getting in touch with us at in order to request an API feature. We could develop a client for you that protects citizen data with a native OpenCRVS audit trail.

Expose OpenHIM via a Traefik whitelist

In order to expose OpenHIM to be accessible on the public internet, you must comment in

You must enter a comma separated list of trusted IP addresses to the whitelist property.

You need to create a record to expose the api.<your-domain> endpoint to OpenHIM.

Now you can create your own microservice and register it with OpenHIM following the

What are OpenHIM Mediators?

are separate microservices that run independently to OpenCRVS and perform additional mediation tasks for a particular use case. The common tasks within a mediator are as follows:

  • Message format adaptation - this is the transformation of messages received in a certain format into another format (eg. HL7 v2 to HL7 v3 or MHD to XDS.b).

  • Message orchestration - this is the execution of a business function that may need to call out to one or more other service endpoint on other systems. (eg. Enriching a message with a client’s unique identifier retrieved from a client registry then sending the enriched message to a shared health record).

Mediators can be built using any platform that is desired (some good options are pure Java using our mediator engine, Node.js, Apache Camel, Mule ESB, or any language or platform that is a good fit for your needs). The only restriction is that the mediator MUST communicate with the OpenHIM-core in a particular way.

Mediators must register themselves with the OpenHIM-core, accept request from the OpenHIM-core and return a specialised response to the OpenHIM-core to explain what that mediator did.

If you are interested in developing your own mediators, read the

Security guidance

OpenCRVS FHIR Resources contain sensitive patient data. When you are writing your mediator, it is your responsibility as an OpenCRVS implementor in your nation to ensure that you security check the accessing client. The following steps are essential:

Mediator authorisation to OpenCRVS data

  1. The mediator's exposed client endpoints must be protected by SSL so that data is encrypted in transit.

  2. The endpoints must enforce JWT authentication.

  3. The endpoints must check the scope of the JWT before permitting any further requests for business functions you feel are relevant to that scope.

Once the mediator has been written, tested and peer reviewed, it must be penetration tested by an equivalent independent, equivalent certified penetration testing organisation before deployment.

OpenHIM
OpenHIM
team@opencrvs.org
these lines in the docker-compose.deploy.yml file.
DNS
Mediator
OpenHIM documentation.
Mediators
OpenHIM Documentation
CREST